Going Nuclear

How the Atom Will Save the World
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Each pulse marks the presence of a distinct type of atom.
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The periodic table condenses the complexity of the world — grapes,

mountains, galaxies — into 118 chemical elements.
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By transforming nitrogen into oxygen, Rutherford and Blackett
had changed the fundamental nature of an atom at will. They had
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A uranium nucleus splits — or fissions — into two smaller
nuclei after being hit by a neutron.
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Neutron curves for different k-values.




2 December 1942. Fermi and his colleagues watch Chicago Pile- 1— the world’s

first nuclear reactor — go critical at the inauguration of the Atomic Age. You
can see the Suicide Squad atop the reactor. Image courtesy of US National
Archives and Records Administration/Science Photo Library.
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uranic powder is pressed into grape- sized pieces and sin-tered
into hard ceramic pellets. From one pellet, a few dozen of
which would fit easily in the palm of your hand, a typical
nuclear reactor can generate as much electricity as a tonne of
coal. Here’s one approximately to scale:
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The number of new nuclear reactors connected to the grid each
year since the dawn of the Atomic Age.*'
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Predicted median levelised cost of electricity by 2025. The upper and
lower limits of these predictions are shown by the uncertainty bars.*’
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Average electricity concentration of different power sources. Onshore
wind is so dilute that it barely registers on this scale.®
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Mining intensity of different electricity sources.'®

15

1,200



Coal
Gas

Solar (farm)

820

Solar (rooftop)
Hydro
Offshore wind
Nuclear

Onshore wind

0 10 20 30 40 50

Grams of CO; equivalent per kilowatt-hour of electricity

Median CO  intensity of electricity sources. Coal and gas are, predictably,
off the scale compared to renewables and nuclear.”
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\ DANGER
/) POISONOUS RADIOACTIVE4! WASTE BURIED HERE
DO NOT DIG OR DRILL HERE BEFORE 12,000 A.D.

A message of foreboding — designed in 1992 by a group comprising an engineer,
an architect, an anthropologist, an archaeologist, a linguist, and an astronomer —

designed to ward future generations away from buried nuclear waste. (Image

courtesy of Sandia National Laboratories.)
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The circles are Rutherford’s actual measurements; the decay curve
is one I mathematically fit to his data.’
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The nuclear reactions that synthesise long- lived isotopes of neptunium,
plutonium, and americium. The times above the tiles are half- lives. I've also
shown minor nuclear reactions, faded for clarity. There are dozens more nuclear
reactions happening simultaneously — plus a criss-cross of radioactive

decays — but I had to stop somewhere . . .
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An old joke, scribbled into a notebook, captures the essence of breeder reactors.
(Image courtesy of United States Department of Energy Office of Scientific
and Technical Information, c. 1950s.)
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A top- down sketch of Experimental Breeder Reactor 1. All dimensions
are in inches. The reactor wraps around full- circle, but it’s been cut away
in this sketch. (Image courtesy of Argonne National Laboratory.)
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Annual background radiation dose (millisieverts)

Background radiation from natural sources in 20 of the most populous European
nations. I omitted anthropogenic sources of radioactivity, such as atomic bombs and
Chernobyl fallout, because they’re imperceptible at this scale."

25



Excess cancer risk

————
‘\
—————i

———i

} { { i T Increased risk

| Decreased risk

Radiation dose

Increase in cancer risk versus radiation dose, furnished with real data
collected between 1950 and 2003 in the Life Span Study. I omitted units
for clarity because it’s the trend that matters.”’
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Deaths per terawatt-hour of different electricity sources. Wind, nuclear,
and solar are so safe that they’re invisible on this scale.*®
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l
The first X~ ray of human bones, taken by Rontgen in 1895. Ludwig

was wearing a ring on her third finger. (Image by W. K. Réntgen,
courtesy of the Wellcome Collection.)
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Sketches of humdrum glucose (left) and radioactive fluorodeoxyglucose (right). Note
how similar their molecular structures are.
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Pre-treatment After three bouts After a fourth bout
of treatment of treatment

PET/CT scans of a patient from a clinical trial in 2014— 2015 during
repeat rounds of actinium-225 therapy.” (Image courtesy of the Society of
Nuclear Medicine and Molecular Imaging.)
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Protons are white; neutrons are black.
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A bird’ s- eye- view of a cyclotron. The magnetic field rises up through the dees from

underneath and bends the ions into a spiral path.
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The main production routes for fluorine- 18. Protons are white; neutrons are black.
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The uranium- 233 decay series. The times next to the decay
arrowsarethe half-lives.
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Conventional explosives

Implosion-type atomic bombs compress a sphere of plutonium to super-criticality.
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Before firing After firing

Conventional explosives Super-critical mass
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Sub-critical masses

Gun-type atomic bombs slam two sub-critical masses together
toachieve super-criticality.
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Global radiation dose from atomic bomb fallout (left), and strontium- go
concentrations in the bones of o— 5- year- olds (right). I plotted these datasets
against a backdrop of weapons tests. Tests after 1963 were conducted almost
exclusively underground, and so their radiological effects were diminished."*
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The precise numbers of atomic bombs are state secrets, but these data represent
best estimates. This graph doesn’t include retired bombs awaiting dismantlement,
of which there are (at the time of writing) about 2,500.%
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Estimates of the explosive energy of a first atomic strike. I omitted the other
atomic bomb nations because their first strikes are too small to see on this scale.”"
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Iran is actively pursuing them; Syria is considering it.*
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A bird’ s- eye- view of the solar system showing the Voyagers” paths. Note that
Vovyager 2 launched 1 month before Voyager 1 but was soon overtaken.
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Apollo 12 astronaut Alan Bean lifts a plutonium- 238 fuel element
from the Apollo Lunar Module. The finned object by his knees
is the battery’s casing. (Image courtesy of NASA.)
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Plumes of ice — photography by Cassini — gush from cracks in

Enceladus’ icy crust, hinting that an ocean of liquid water lies beneath.
(Imagecourtesyof NASA/JPL-Caltech/SSI.)
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A mass spectrum of reactor- grade plutonium. Only plutonium- 241 has a short
enough half- life to decay in human timescales. It’s replaced by its americium- 241
progeny as it ages. (The isotopic fingerprint of reactor- grade plutonium varies

between nuclear reactors; my sketch represents a typical light- water reactor.)’
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A nuclear rocket engine. Gas heated by fission goes one way;
the rocket goes the other.
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Appendix

Numerical prefixes

We use numerical prefixes as mathematical shorthands. They can be
bolted onto the front of any unit, including units of power (watts)
and energy (joules, watt-hours, or electron-volts).

Prefix Symbol | Multiplier Everyday word
Pico p 10”  =0.000000000001 ‘Trillionth’
Nano n 10”° = 0.000000001 ‘Billionth’
Micro u 10° = 0.000001 ‘Millionth’
Milli m 107 = 0.001I ‘Thousandth’
_ _ 10° - _

Centi c 10° = 100 ‘Hundred’
Kilo k 10° = 1,000 ‘Thousand’
Mega M 10° = 1,000,000 ‘Million’
Giga G 10° = 1,000,000,000 ‘Billion’
Tera T 10"? = 1,000,000,000,000 | ‘Trillion’
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