$\label{eq:Figure 1} \mbox{ Figure 1}$ Just about the simplest model of the mind possible. Simple diagram of the mind: © Anne Carlyle Lindsay Figure 2 The figure depicts a playing board with three pegs. There are three rings of decreasing size on the leftmost peg. The goal is to move all three rings from the leftmost peg to the rightmost peg. There are just two rules about how you can move rings: you can move only one ring at a time, and you can't place a larger ring on top of a smaller ring. Tower of Hanoi game: © Anne Carlyle Lindsay $\label{eq:Figure 3}$ A depiction of your mind when you're working on the puzzle shown in Figure 2. Diagram of mind playing Tower of Hanoi: © Anne Carlyle Lindsay Figure 4 The tea-ceremony problem, depicted to show the analogy to the disc-and-pegs problem. Tea ceremony problem: © Anne Carlyle Lindsay Figure 5 Each card has a letter on one side and a digit on the other. There is a rule: If there is a vowel on one side, there must be an even number on the other side. Your job is to verify whether this rule is met for this set of four cards, and to turn over the minimum number of cards necessary to do so. Which cards would you turn over? Wason card problem: © Anne Carlyle Lindsay Figure 6 You are to imagine that you are a bouncer in a bar. Each card represents a patron, with the person's age on one side and their drink on the other. You are to enforce this rule: If you're drinking beer, then you must be twenty-one or over. Your job is to verify whether this rule is met for this set of four people. You should turn over the minimum number of cards necessary to do so. Which cards would you turn over? Beer version of Wason problem: © Anne Carlyle Lindsay $\label{eq:Figure 7} \textbf{A slightly modified version of our simple diagram of the mind.}$ Elaborated diagram of the mind: © Anne Carlyle Lindsay Figure 8 Can you find the real penny among the counterfeits? People are terrible at this task even though they have seen a penny thousands of times. True and false penny: From "Long term memory for a common object" by R. S. Nickerson and M. J. Adams in *Cognitive Psychology*, *11*, 287-307. Copyright © 1979. Reprinted with permission from Elsevier. Figure 9 A tree diagram showing the typical structure of a lesson plan on Pearl Harbor. The organization is chronological. U.S. entry in WWII: © Anne Carlyle Lindsay Figure 10 Alternative organization for a lesson plan on Pearl Harbor. From a storytelling point of view, Japan is the strong character because she takes actions that move the story forward. Alternate lesson, U.S. entry in WWII: © Anne Carlyle Lindsay Figure 11 Part of the organizational scheme for a lesson plan on the Z-score transformation for a statistics class. Hierarchy for Z scores: © Anne Carlyle Lindsay Figure 12 Common mnemonic methods. Mnemonics help you to memorize meaningless material. | Mnemonic | How It Works | Example | |---------------------|---|---| | Peg word | Memorize a series of peg words by using a rhyme—for example, one is a bun, two is a shoe, three is a tree, and so on. Then memorize new material by associating it via visual imagery with the pegs. | To learn the list radio, shell, nurse you might imagine a radio sandwiched in a bun, a shoe on a beach with a conch in it, and a tree growing nurses' hats like fruit. | | Method of loci | Memorize a series of locations on a familiar walk—for example, the back porch of your house, a dying pear tree, your gravel driveway, and so on. Then visualize new material at each "station" of the walk. | To learn the list radio, shell, nurse you might visualize a radio hanging by its cord on the banister of your back porch, someone grinding shells to use as fertilizer to revitalize the dying tree, and a nurse shoveling fresh gravel onto your driveway. | | Link method | Visualize each of the items connected to one another in some way. | To learn the list radio,
shell, nurse you might
imagine a nurse listening
intently to a radio while
wearing large conch shells
on her feet instead of
shoes. | | Acronym method | Create an acronym for
the to-be-remembered
words, then remember
the acronym. | To learn the list radio,
shell, nurse you might
memorize the word
RAiSiN using the capital-
ized letters as cues for the
first letter of each word
you are to remember. | | First-letter method | Similar to the acronym
method, this method
has you think of a
phrase, the first letter
of which corresponds
to the first letter of
the to-be-remembered
material. | To learn the list radio,
shell, nurse you could
memorize the phrase
"Roses smell nasty," then
use the first letter of each
word as a cue for the
words on the list. | | Songs | Think of a familiar
tune to which you can
sing the words. | To learn the list radio,
shell, nurse you could sing
the words to the tune of
"Happy Birthday to You." | Figure 13 Name each picture, ignoring the text. It's hard to ignore when the text doesn't match the picture, because reading is an automatic process. Picture word mismatch: © Anne Carlyle Lindsay Figure 14 A graph showing how much students remembered of the material from a one-semester course in developmental psychology taken between three and sixteen years earlier. Separate lines show the results for students who got an A in the course and those who got a B or lower. Graph showing forgetting of course material: From "Very long-term memory for information taught in school" by J. A. Ellis, G. B. Semb, and B. Cole in *Contemporary Educational Psychology*, 23, 419-433, Figure 1, p. 428. Copyright © 1998. Reprinted with permission from Elsevier. Figure 15 The performance on a basic algebra test by people who took the course between one month and fifty-five years earlier. The four lines of data correspond to four groups, separated by how much math they took *after* basic algebra. Graph from Bahrick & Hall: From "Lifetime maintenance of high school mathematics content" by H. P. Bahrick and L. K. Hall in *Journal of Experimental Psychology: General, 120*, 20-33, Figure 1, p. 25. Copyright © 1991 by the American Psychological Association. Figure 16 Some of the many distinctions among cognitive styles that have been proposed and tested by psychologists. | Cognitive Styles | Description | |-----------------------------------|--| | Broad/narrow | Preference for thinking in terms of
a few categories with many items
versus thinking in many categories
with few items | | Analytic/nonanalytic | Tendency to differentiate among
many attributes of objects versus
seeking themes and similarities
among objects | | Leveling/sharpening | Tendency to lose details versus ten-
dency to attend to details and focus
on differences | | Field dependent/field independent | Interpreting something in light of
the surrounding environment versus
interpreting it independently of the
influence of the environment | | Impulsivity/reflectiveness | Tendency to respond quickly versus tendency to respond deliberately | | Automatization/restructuring | Preference for simple repetitive
tasks versus preference for tasks
that require restructuring and new
thinking | | Converging/diverging | Logical, deductive thinking versus
broad, associational thinking | | Serialist/holist | Preference for working incremen-
tally versus preference for thinking
globally | | Adaptor/innovator | Preference for established proce-
dures versus preference for new
perspectives | | Reasoning/intuitive | Preference for learning by reasoning
versus preference for learning by
insight | | Visualizer/verbalizer | Preference for visual imagery versus
preference for talking to oneself
when solving problems | | Visual/auditory/kinesthetic | Preferred modality for perceiving and understanding information | Figure 17 Two methods of determining field dependence or independence. At left is the rod-and-frame test. The rod and frame are luminous and are viewed in a darkened room. The subject adjusts the rod so that it is vertical. If the subject's adjustment is strongly influenced by the surrounding frame, she is field dependent---if not, she is field independent. At right is one item from an embedded-figures test, in which the subject tries to find the simple figure hidden in the more complex one. Success on tasks like this indicates field independence. Like the rod-and-frame task, it seems to indicate an ability to separate a part of one's visual experience from everything else one is seeing. Here is a simple form, which we have labeled "x": This simple form, named "x," is hidden within the more complex figure below: Figure 18 Gardner's eight intelligences. | Intelligence | Description | Profession requiring
high levels of given
intelligence | | |----------------------|--|--|--| | Linguistic | Facility with words
and language | Attorney, novelist | | | Logical-mathematical | Facility with logic,
inductive and deduc-
tive reasoning, and
numbers | Computer programmer,
scientist | | | Bodily-kinesthetic | Facility with body
movement, as in sports
and dance | Athlete, dancer, mime | | | Interpersonal | Facility in under-
standing others'
emotions, needs,
and points of view | Salesperson, politician | | | Intrapersonal | Facility in under-
standing one's
own motivations
and emotions | Novelist | | | Musical | Facility in the creation,
production, and
appreciation of music | Performer, composer | | | Naturalist | Facility in identifying
and classifying flora or
fauna | Naturalist, chef | | | Spatial | Facility in the use and
manipulation of
space | Architect, sculptor | | Figure 19 Two views of intelligence. According to the view on the left, a single type of intelligence underlies all intellectual tasks. So doing well on the vocabulary test implies that you have a lot of g, which implies that you should also do well on the other three tests. In the model on the right, doing well on the vocabulary test implies that you have high verbal intelligence but tells us nothing about how much mathematical intelligence you have, because the two are separate. Data from hundreds of studies show that neither of these models is correct. The model in Figure 20 is commonly accepted. Two views of intelligence: © Anne Carlyle Lindsay Figure 20 The dominant view of intelligence. There is a general intelligence that contributes to many different types of mental tasks, but there are also particular types of intelligence that are supported by the general intelligence processes. Almost everyone agrees that there are verbal and mathematical intelligences, although some people think these should be broken down further. The dominant view of intelligence: © Anne Carlyle Lindsay Figure 21 The nine principles of the mind discussed in this book along with the knowledge needed to deploy them, and the most important implication of each. | Chapter | Cognitive
Principle | Required
Knowledge
About Students | Most Important
Classroom
Implication | |---------|--|--|--| | 1 | People are naturally curious, but they are not naturally good thinkers. | What is just
beyond what my
students know
and can do? | Think of to-be-
learned material
as answers, and
take the time nec-
essary to explain
to students the
questions. | | 2 | Factual knowl-
edge precedes
skill. | What do my stu-
dents know? | It is not possible
to think well on
a topic in the
absence of factual
knowledge about
the topic. | | 3 | Memory is
the residue of
thought. | What will stu-
dents think dur-
ing this lesson? | The best barometer
for every lesson
plan is "Of what
will it make the
students think?" | | 4 | We understand
new things in
the context
of things we
already know. | What do stu-
dents already
know that will
be a toehold
on understand-
ing this new
material? | Always make deep
knowledge your
goal, spoken and
unspoken, but rec-
ognize that shallow
knowledge will
come first. | | 5 | Proficiency
requires practice. | How can I get
students to
practice without
boredom? | Think carefully
about which mate-
rial students need
at their fingertips,
and practice it over
time. | Figure 21, continued The nine principles of the mind discussed in this book along with the knowledge needed to deploy them, and the most important implication of each. | Chapter | Cognitive
Principle | Required
Knowledge
About Students | Most Important
Classroom
Implication | |---------|--|--|--| | 6 | Cognition is fun-
damentally dif-
ferent early and
late in training. | What is the dif-
ference between
my students and
an expert? | Strive for deep
understanding in
your students, not
the creation of new
knowledge. | | 7 | Children are
more alike
than differ-
ent in terms of
learning. | Knowledge of
students' learn-
ing styles is not
necessary. | Think of lesson
content, not stu-
dent differences,
driving decisions
about how to teach. | | 8 | Intelligence
can be changed
through sus-
tained hard
work. | What do
my students
believe about
intelligence? | Always talk about
successes and fail-
ures in terms of
effort, not ability. | | 9 | Teaching, like
any complex
cognitive skill,
must be prac-
ticed to be
improved. | What aspects
of my teaching
work well for
my students, and
what parts need
improvement? | Improvement
requires more than
experience; it also
requires conscious
effort and feedback. |